Painted Honeyeater

Grantiella picta (Gould, 1838)
Meliphagidae

Conservation status
Vulnerable C2a(ii)

Reasons for listing
Population 2500–10 000 in a single subpopulation with a continuing decline projected from habitat loss

Status 2000
Near Threatened C2a(ii)
Reason for change in 2010: population thought to have declined to <10 000

Status 1990
Near Threatened C2a(ii)

Taxonomy
No infraspecific taxa described
Taxonomic uniqueness: high (43 genera/family, 1 species/genus, 1 subspecies/species)

Range
Sparsely distributed from south-eastern Australia to north-western Queensland and eastern Northern Territory (Higgins et al. 2001). Greatest concentrations and almost all records of breeding come from south of 26°S, on inland slopes of Great Dividing Range between Grampians, Victoria, and Roma, Qld (Higgins et al. 2001; Barrett et al. 2003). Seasonal north–south movements are governed principally by the fruiting of mistletoe, with many birds moving after breeding to semi-arid regions, including north-eastern South Australia, central and western Qld and central NT (Higgins et al. 2001). The only records from SA in 1998–2008 are from Gluepot reserve (Birds Australia Atlas). Given its dispersive habits, it is assessed here as having a single subpopulation. The AOO, based on a density of about 30 ha/pair when breeding (D. Watson in litt.), is unlikely to exceed 1000 km² scattered across multiple sites.

Abundance
Total population is unlikely to exceed 10 000 mature individuals. Based on an estimated maximum 150 pairs in the 4300 ha Binya State Forest and up to 6 such concentrations across in NSW and similar or lower numbers elsewhere, the total NSW population is estimated to be <2000 pairs (D. Watson in litt.). Much smaller numbers nest in Vic, but numbers in Qld are poorly known and are assessed here as similar to those in NSW. The maximum documented count was 74 birds in 4 days of surveys in Culgoa floodplain, NSW (Oliver et al. 2003). The species has declined in abundance in western NSW (Maher 1988; Smith et al. 1995) and Vic (Brindley 1991; Department of Sustainability and Environment 2003). Although the number of records submitted to Birds Australia Atlas has increased as the species has become a target for birdwatchers, the distribution may have contracted (recorded from 164 grids in 1977–81; 142 grids in 1998–2003 and 90 grids in 2003–2008, despite greater search effort).

Ecology
The most specialised of Australia’s honeyeaters, being largely dependent on mistletoe fruits (Watson 2012). Breeding Painted Honeyeaters depend primarily on just 2 species: Needle-leaved Mistletoe Amyema cambagei and Grey Mistletoe A. quandang. These grow in acacia-dominated woodlands, particularly those dominated by Brigalow Acacia harpophylla, Yarran A. homalophylla, Boree or Weeping Myall A. pendula and Mulga A. aneura, as well as woodlands of Belah Casuarina cristata and Buloke Allocasuarina luehmannii, riparian woodlands of Black Box Eucalyptus largiflorens and River Red Gum E. camaldulensis, box-ironbark woodlands and White Cypress-pine Callitris glaucophylla. River She-oak Casuarina cunninghamiana gallery forests with abundant mistletoes may serve as a drought refuge (Higgins et al. 2001; Barea and Watson 2007; Barea 2008b; Watson 2012). Prefers woodland with many mature trees, as these host more mistletoes (Oliver et al. 2003). Besides mistletoes, also feeds on nectar and insects especially in the non-breeding season (Oliver et al. 2003). Less common in strips of remnant box-ironbark woodlands, such as along roadsides and in windbreaks, than in wider blocks (Robinson 1994). Breeds during peak Grey Mistletoe fruit availability (Barea and Watson 2007). Nesting success is relatively low in trees (43%) and especially within mistletoe clumps (17%), with 83% of nest failures caused by predation (Barea 2008a). A generation time of 5.8 years (BirdLife International 2011) is derived from an age at first breeding of 1.5 years (extrapolated from mean values for Manorina and Phylidonyris) and a maximum longevity in the wild of 10.1 years (extrapolated from mean values for other genera in Meliphagidae).
Current eligibility against IUCN Red List Criteria

<table>
<thead>
<tr>
<th>IUCN category</th>
<th>Criteria eligibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Near Threatened: Near Threatened: population decline of 20–29% over the last 3 generations (17 years) suspected from monitoring, a reduced AOO and deteriorating habitat quality</td>
</tr>
<tr>
<td>B</td>
<td>Not applicable: >10 locations, not severely fragmented, population fluctuations not extreme</td>
</tr>
<tr>
<td>C</td>
<td>Vulnerable: population 2500–10 000 mature individuals, suspected continuing decline, 100% in 1 subpopulation</td>
</tr>
<tr>
<td>D</td>
<td>Not applicable: population >1000 mature individuals, >5 locations</td>
</tr>
<tr>
<td>E</td>
<td>Not applicable: no population viability analysis undertaken</td>
</tr>
</tbody>
</table>

IUCN Red List assessment data

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extent of occurrence trend</td>
<td>2 800 000 km² stable</td>
</tr>
<tr>
<td>Area of occupancy trend</td>
<td>1000 km² decreasing</td>
</tr>
<tr>
<td>No. of mature individuals trend</td>
<td>10 000 decreasing</td>
</tr>
<tr>
<td>No. subpopulations</td>
<td>1</td>
</tr>
<tr>
<td>No. locations</td>
<td>>10</td>
</tr>
<tr>
<td>Generation time</td>
<td>5.8 years</td>
</tr>
<tr>
<td>Global population share</td>
<td>100%</td>
</tr>
</tbody>
</table>

Threats

Brigalow and other suitable habitats have been extensively cleared in the recent past, especially in Qld (Oliver et al. 2003). In Qld, much suitable habitat was cleared historically (only 11% of Brigalow woodland in the Brigalow Belt South remained in 1999), but annual rates of loss remained at <5% in 1997–1999 (Wilson et al. 2002); the rate of clearance has subsequently declined but is unquantified. In NSW, 640 000 ha native habitat was approved for clearance in 1998–2005, and illegal clearing was estimated at c.30 000 ha in 2005 alone; much of this was suitable for Painted Honeyeaters. Small strips and patches of habitat are not protected from clearance. Most remaining habitat is on private land and continues to be degraded by over-grazing by livestock, native macropods and rabbits Oryctolagus cuniculus. Overgrazing also prohibits regeneration (Oliver et al. 2003). Within this habitat rates of nest predation are particularly high and may not be sustainable (Barea 2008a).

Conservation objectives

1. Stable population indices at key sites
2. No further clearance of suitable habitat
3. Principal causes of nest failure and their management implications
4. Investigate causes of nest failure and determine influence on population viability
5. Promote ecological management of woodland remnants on private land, particularly those heavily parasitised by mistletoe
6. Using appropriate incentives, undertake extension with landholders who have suitable woodland habitat to promote sound management of remnants
7. Promote revegetation and land reclamation that recreates woodland habitat with a full complement of biodiversity, including the honeyeater

Information required

1. Population trends at key sites
2. Ecology and location during non-breeding season
3. Principal causes of nest failure and their management implications

Management actions required

1. Monitor key sites, particularly where there are management interventions
2. Promote ecological management of woodland remnants on private land, particularly those heavily parasitised by mistletoe
3. Protect all woodland in which the honeyeaters are known to be resident from clearing
4. Place all areas of public land that contain the honeyeaters under secure conservation management, particularly those in timber reserves, transport corridors and local government land

© Birds Australia 2011

Comments received from
Barry Baker, Laurence Barea, Jez Bird, Andrew Burbidge, Hugh Ford, Tim Holmes, Richard Johnson, Peter Menkhorst, James O’Connor, Andy Symes, David Watson, John Woinarski